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FREE TIDAL OSCILLATIONS IN ROTATING FLAT BASINS
OF THE FORM OF RECTANGLES AND OF
SECTORS OF CIRCLES

By A. PNUELI anp C. L. PEKERIS
Department of Applied Mathematics, The Weizmann Institute, Rehovot, Israel

(Communicated by Sir Geoffrey Taylor, F.R.S.~—Recewed 31 July 1967)

A study is made of the periods of free tidal oscillations and of the corresponding wave patterns in
rotating flat basins which have the form of rectangles or of sectors of circles. The analysis is based
on a variational principle for tidal oscillations. It is shown that, if { denotes the tide height and {*
its complex conjugate, the sign of the integral :f¢*(d¢/ds) ds, which is real, taken around the peri-
phery of the basin, determines whether the tidal wave propagates around the basin in the direction
of rotation (positive wave), or opposite to it (negative wave). The sense of propagation can also be
told from the sign of dk%(7)/d7, where k? = (02 —4w?)/gh and 7 = 2w/0o, » denoting the speed of
rotation, and o the frequency. A discussion is given of the removal by rotation of the degeneracy that
cxists in some modes in the absence of rotation. The method (A) of expansion of { in terms of the
cigenfunctions for no rotation (7 = 0) was found to converge well only for 7 € 1. Our calculations
were carricd out by an adaptation of Trefftz’s method, in which the variation of the surface integral
is reduced to a variation of a linc-integral taken along the boundary. This method (B) was found to
be effective for all ranges of rotation. The solutions obtained illustrate that in some modes the tides
are always positive, while in others they start out being negative at slow rotation and turn positive
as the rotation is increased. A theory is developed, for basins of general shape, showing that as the
speed of rotation is increased indefinitely a Kelvin regime sets in, in which the tide concentrates
near the periphery, decreasing exponentially towards the interior. The Kelvin wave is positive and

the characteristic frequencics o, are given by o, = 27n./(gh)/p, p denoting the perimeter of the
basin. It is shown that ncar a blunt corner of the coast the tide has a singularity like that in potential
flow.

1. INTRODUCTION

In this investigation we present a general theory of the free tidal oscillations of rotating flat
basins having the form of rectangles and of circular sectors. Our aim has been to gain
insight into the dynamics of tides in these simple basins so as to serve as a guide in the inter-
pretation of tidal studies in the more complicated real world oceans. In the latter, the
approach is necessarily numerical, requiring the adoption of a rectangular grid for the
finite difference method. The resulting jagged representation of the coastline was found to
rctard the convergence of the solution, and the question arises as to the theoretical distribu-
tion of the tide around a blunt corner such as is shown in figures 16 to 21. Our analysis
shows that near a corner of angular opening n/u (¢<1), the tide height { is singular, as in
potential flow, and is approximated by equation (95), where 7 = 2w/o. Here w denotes the
angular rotation of the basin and ¢ the frequency of tidal oscillation. The degree of approxi-
mation attained by representation (95) is shown in table 1.

In the spectral analysis of the tidal oscillations, where the characteristic frequencies
0,(w) are determined as functions of the angular rotation w, we found that a more meaningful
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150 A. PNUELI AND C. L. PEKERIS

parameterization is the function £2(7), where £2 = (02— 40?)/gh, and & denotes the depth
of the liquid. These characteristic frequency functions £2(7) are shown in figures 2, 9, 15
and 22 for model basins of various shapes. From a variational formulation of the tidal
problem given in equation (13) we deduce in § 4 that the slope of the £%(7) function deter-
mines the direction of propagation of the tidal wave. When d?/d7 > 0, the wave is negative
and advances in a direction opposite to that of the rotation of the basin, and vice versa when
dA?/d7 < 0. As seen in figure 2 for a quadrant circular sector, the £2(7) curve for the first
mode (1) has a negative slope everywhere, and the wave is therefore positive at all speeds of
rotation. This is shown in the flow patterns in figures 3, 4 and 5, arranged in order of
increasing speed of rotation. The £2(7) curve for mode Il in figure 2 starts out with a positive
slope, and the corresponding wave, shown in figure 6, is negative. As the maximum in curve I1
is passed, the originally negative wave is transformed into a positive one, as is illustrated
in figures 7 and 8. This phenomenon of the transformation of an initially negative wave
into a positive one was first demonstrated by Corkan & Doodson (1952), in connexion with
Taylor’s conjecture (Taylor 1922) that the tidal waves in a rectangular basin are always
positive. For the case of a square basin, we seen from figure 22 that many of the waves are
of the type that start out being negative at slow rotation, and become positive as the rotation
is increased. Beyond the maximum in the £%(7) curve, the total change of phase as the wave
makes a complete turn around the periphery of the basin is 277, where n denotes the order
of the mode.

As the speed of rotation is increased and £? becomes negatively large, the tidal wave tends
to concentrate near the periphery of the basin, with very little motion remaining in the
interior. The highest co-range lines tend then to assume a shape conforming to the coastline,
as shown in figures 11, 13, 19, 21, and very prominently in 31. The tidal motion then
consists of a Kelvin wave (Lamb 1932, § 208), progressing in the positive direction around
the periphery of the basin. The theory of the establishment of a Kelvin regime in the free
tidal oscillations of rotating basins of arbitrary shape is developed in § 6. It is shown there
that the frequency ¢, in the Kelvin regime is given by o, = 2mn./(gh)[p, where p denotes the
perimeter of the basin. The tidal amplitude decreases exponentially from the coast into the
interior, as given by equation (44).

Our analysis is based on a variational formulation of the tidal problem, which is developed
in § 2. Some results derivable from the variational formulation are summarized in § 3. In
§4 we prove that the sense of propagation of the tidal wave can be told from the sign of
dk?%(r)/d7. The classification of the free tidal modes with respect to the direction of propaga-
tion of the wave and the degeneracy in the limit of no rotation is discussed in § 5. Our results,
which are general, agree with the analysis made by Rao (1965, 1966) for the case of rect-
angular basins. Section 6 gives the theory of the Kelvin-type wave for flat basins.

In §7 we discuss the efficacy of expanding the solution for the tide in the presence of
rotation, in terms of the eigenfunctions for the case of no rotation (method A). It is found
that the convergence becomes poor as the rotation parameter 7(= 2w/s) becomes of the
order of unity. Our calculations in this work were made by an adaptation of the method of
Trefftz (Collatz 1965), whereby the tidal problem is reduced to a variational integral taken
along the boundary of the basin. This method B is discussed in § 8. We found that where 50
terms were needed to assure convergence in method A, only 12 terms sufficed when method B
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FREE TIDAL OSCILLATIONS IN ROTATING FLAT BASINS 151

was used. The theory of free tidal oscillation in rectangular basins is developed in §9 by
method B. The case of basins of the shape of circular sectors is treated in § 10, also on the
basis of method B.

2. VARIATIONAL FORMULATION OF THE TIDAL EQUATIONS FOR FLAT BASINS

The tidal equations for flat basins, in the long wave approximation, are (Lamb 1932)
ou i .
5 200 =—g5 ((=0), (1)

§?+ 20U = ——g?% (g*Z), (2)

where u, v are the components of velocity in the directions x and y, { is the tidal elevation,
and { the equilibrium tide height given by

{=-QJg, (3)
with ) denoting the tidal potential. The equation of continuity is
a 7 d

We shall be concerned here only with the free tidal oscillations, and shall also assume that
the depth % is constant. With a time-factor ¢i’?, equations (1) and (2) can be solved for z and
v in terms of {:

_ g (0 0
LT R4 <3x o ay) & (5)
o dog (3 9)
'R (3}/—{_” ox. & (6)
where 7 = 200, (7)

The equation of continuity (4) then yields the wave equation for {:

(V24-42) £ =0, (8)
2 40)2 02
e 00T 0y e
k% = g g/z(l 72). (9)
At a vertical boundary, the vanishing of the component of velocity normal to the boundary
gives the boundary condition 9 P
(Gu=irgy) =0 (10

where n denotes the outward normal to the boundary, and s the direction along the

boundary.
The tidal wave equation (8) can be derived from the variational form

of [ [Uve—incr ¢~ c.cp) —# (271 a4) = o, (1)

whereupon equation (10) results as a nafural variational boundary condition. Here the star

denotes the complex conjugate. The variational formulation of the tidal equations for flat
19-2
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152 A. PNUELI AND C. L. PEKERIS

basins was given by Lamb (1932, §2055, §2124), and for an ocean covering the rotating
earth by Poincaré (1910). Using the relation

[[@re—ceaa=[oSas (12)

we can transform (11) into
o{ [ [Tvge—re i ad—ir [ex ] = o, (13)

The line-integral [{*(9(/ds) ds has an important physical interpretation. If we write for
the tidal height {(s) on the boundary s

C(s) = R(s) exp {i[ot+0(s) ]}, (14)

Elﬁ) ds.

. o oy
il — 2
then 1f§ o ds = 1fRRds+fR FR

(15)
The first integral on the right vanishes, hence
—if{j*%ds: JR2¢9(5) ds. (16)

When d(s) < 0 all along the boundary, the phase of the tide given in exp [i(ot-+6As)]
represents a wave advancing along the boundary in the positive direction of increasing 6,
whereas when 6(s) > 0, the wave advances in the negative direction. Hence, it follows that
if the wave advances in the same direction all along the boundary, the direction of advance
is positive or negative depending on whether the integral i[{*(d{/ds)ds is positive or
negative respectively.

3. SOME CONSEQUENCES DERIVABLE FROM THE VARIATIONAL
FORMULATION OF THE TIDAL EQUATIONS

We shall state here some corollaries of the variational formulation of the tidal problem
given in equation (13). The proofs, which will not be given here, can be made along the lines
of the classical membrane theory, modified by the presence of the Coriolis 7-term in (13)
and in the boundary condition (10).

1. The functional D({) defined by

D) =ff[V§[2dA~i7f§*~—§—§ds, (17)
is real.

2. A function {; which yields an extremum £} for D({,), subject to the normalization

condition
HE) = [ [1a)dd =1, (18)
satisfies the wave equation (V2R ¢ = 0 (19)
1= Y ot

and the natural boundary condition

d . 0
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In the case of the nth eigenvalue £,, we have to impose on the eigenfunction {, the addi-
tional condition of orthogonality to each of the eigenfunctions of lower order.

3. Forall7 <1 (¢>20), D({) is positive. Hence for 7 < 1, the eigenvalues 2 are discrete
and positive.

4. The set of eigenfunctions ¢, is complete and orthogonal

”g* Gdd=0 (i+)). (21)

4. DETERMINATION OF THE DIRECTION OF PROPAGATION OF THE
TIDAL WAVE FROM THE FUNGCTION £?(7)

For a given value of 7, the system (8) and (10) has a set of eigenvalues £2(7). These eigen-
values will change continuously with the parameter 7, and will reduce to the eigenvalues for
the case of no rotation as 7 — 0. Let us examine the dependence of a given eigenvalue 2
on 7. It can be shown that the associated eigenfunction { satisfies not only the variational
equation (13), but also

ff|V§|2dA~in§*-gfds~k2ff{§{2dz4 0. (22)

Differentiating (22) with respect to 7 we get

—if(*%ds»—%ﬁ;ffm?dAJr{gjj|V§|2dA—iT-;T~f§*ggds—kzg;ffm?dfl} —0.
(23)

The term in brackets in (23) vanishes by (13), since it represents the application of a
particular kind of variation of {, where 8{ ~ (9{/dr) dr. It follows that

%ff:—ifg*%fds/”mpdfl. (24)

Since the sign of i[{*(d{/ds) ds determines the sense of propagation of the tidal wave, we
conclude that when d?/d7 > 0 the wave advances in the negative direction (negative wave),
and vice versa when d42/dr < 0.

5. BEHAVIOUR OF THE EIGENVALUES k2 FOR SMALL VALUES OF T

Let us expand ( in a series of real functions {,, with complex coefficients a,,

{= %dmCm- (25)
Substitution of (25) in (13) gives ‘
3[mzl o, a [vam. V¢, dA —ir fg,% ds—k? ”gm g,,dA] } -0, (26)
Since the variatic;ns da;* are arbitrary, it is necessary that
Sa, [vam.vg,dA—iT f(laa%—’ds—k?ff{,ngdfl:l —0, (27)

for all /. The vanishing of the determinant of the 4,, allows us to determine the eigenvalues
k%(7) as functions of the parameter 7.


http://rsta.royalsocietypublishing.org/

)\
C

|

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L A

iy
I §
A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

154 A. PNUELI AND C. L. PEKERIS
When 7 1s small we can choose, as a basis, the solutions for the casc of no rotation (7 = 0)
(Vz*l_ k;zn) gm ()7 (,}g/n/aﬂ’ = 0. (28)

The ¢, form an orthonormal sct. Using the relation

[[ve, vodd—[[e,veda =k [[e,0a0 =k, (29)

in (27) we get T a4t (K —k%) a; = 0, (30)
: PRe

wliere [, =1 fé’, a:f’ ds. (31)

We now expand a, = a-+a, T4ad - F L (32)

A A A Y e SR (33)

substitutc in (30) and cquate the cocfficients of cach power of 7 to zcro. It is then possible
to show that in certain cascs, which depend on the degencracy of the cigenfunctions , in
the limit of no ration, ¢! vanishes, whilc in others it does not. Since a similar analysis was
given by Rao (1965, 1966), for the special case of a rectangular basin, we shall only state
here the results, which apply generally.

In the casc of no degencracy (singlet), ¢! = 0, and

. > 7 |?
k2 == k)“«ITz Z (]{I{_’f_’llcz ) N SN (31>

Since for low values of r, (k2—£2,) < 0, it follows that ¢ will be negative, and thercfore that
dk?/dr - 0. The wave then propagates in the positive dircction.
In the case of a doublet degeneracy for which the associated cigenfunctions have opposite

symmectry, we gct R k2t l/))r ;-+1i~ (35)
Here ¢! + 0, the wave with the negative slope being positive, and the wave with the positive
slopc negative.
When 7 is large, onc can show that there are solutions for which

k2w kS (e312) . (1> o), (36)

where the £$ arc the eigenvalues of the system
(Ve k0) Gy 0, (37)
&, == 0, on the boundary. (38)

However, these solutions have no physical significance, since, by (9), they imply that ¢ 1s
imaginary. These solutions arc associated with those modcs in which ¢ == O(w), as @ -> oc.
In figure 22 they are represented by the branches which cross the 7 == 1 line.
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6. TipES oF THE KELVIN-WAVE TYPE

We shall now discuss a class of tidal oscillations in which the free periods tend to constant
values as the rotation o is increased indefinitely. These tides consist of a Kelvin type wave
which travels around the periphery of the basin in the positive direction. With 7 increasing
and ¢ remaining finite, the eigenvalues £? take on negative values, as seen from (9). Because
the functional D({) in (17) is positive for 7 < 1, it follows by (22), that in that region of 7,
k% cannot take on negative values. It can be shown that, except for the trivial solution { = ¢,
the function £%(7) can pass through zero only at the point 7 = 1. All the (physical) eigen-
values £%(7) must therefore pass through the point 7 =1 when going from positive to
negative values. For 2 < 0, we get from (22) that ir[{*(d{/ds) ds > 0, hence, by (24),
dk?/dr < 0, so that the roots decrease indefinitely with increasing 7.

Let us seek solutions of the wave equation

02— 40?2
2 — =
(v p Je=o, (39)
with the boundary condition P P ,
(0—972 —i2w %) ¢=o, (40)

such that ¢ remains finite as w - co. For this purpose we adopt the local system of co-
ordinates (n, 5), with the coordinate » having the value zero on the boundary s, and becoming
negative in the interior of the basin. Anticipating that the tidal energy will be concentrated
near the periphery, we replace n by a boundary-like coordinate 5 given by

n = 2wn. (41)

The leading terms in w in equations (39) and (40) give
? 1
() = © 42

d .0
((T—&,;]—IEJC_O (1=0), (43)
of which the appropriate solution, in the original coordinates, is

{ = exp{[(2wn—ios)[J/(gh)] +iot}. (44)

The eigenfrequency ¢ must be such that as s increases and we make a complete turn around
the periphery of the basin, the factor exp {iss/./(gh)} remains single-valued. If  denotes the
perimeter of the basin, we must have

7, = 2mn.J(gh) . (45)

These characteristic frequencies are determined therefore by the perimeter p and the
depth %, independently of the speed of rotation w, as long as the latter is large (in comparison
with ¢). Equation (44) shows that the tidal wave travels in the positive direction, and with
a speed ,/(gh) characteristic of the Kelvin wave. The amplitude decreases exponentially as
we recede from the boundary into the interior in the direction of the normal according to
exp {2wn/./(gh)}, which is characteristic of the Kelvin wave.
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156 A. PNUELI AND C. L. PEKERIS

7. SOLUTION FOR THE TIDES IN A ROTATING BASIN BY METHOD A

In method A we attempt to solve for the tidal oscillations by expanding {, in the first
instance, in terms of the eigenfunctions for the case of no rotation

(=2a,lm (VP+E,) =0, (46)

which satisfy the condition d{,,/dn = 0 on the boundary. By (10), this expansion would be
expected to converge well for small values of 7. As was shown in § 5, substitution of (46) into
the variational equation (13) leads to the system (30) for the determination of the coefficients
a,, (complex), which for unnormalized eigenfunctions ¢, takes on the form

Tzdnzﬂlnz+ (‘lflz—k2) le a4 = 0, (47)
“2 1 8 m
= [[gda, p,=~ife G (48)
For a rectangle defined by 0<x<a, 0<y<h, (49)
the eigenfunctions are L = C€OS 747%26 cos mbry , (50)
m2 2 722 2
k72nn - ﬂ ’772[ 4 (51)

The integral on the boundary becomes

[ as = aptm, 8 pn, ) [ 355 (52)

where plm, k) = m+k (mod2) =1 ((m-+k) odd) (53)
— 0 ((m-+F) even).

With N = f f 2 dA — Lab(1-8y) (18,0, (54)

Ay = 1" s (55)

equation (47) becomes

2 2
TS a1 0 (D) | g | B R dab (1 8u) (1-80) = 0

m,n (56)
Here & and / take on integral values, with zero omitted. Since the coefficient of «,,, is
different from zero only if (m— k) is odd, the coeflicients in (56) are real.

The solutions separate into two independent systems of different symmetry. The even

solutions include the ¢, for which m and n have the same parity. These solutions {, are
symmetrical with respect to the centre of the rectangle

L(2") = L(2), (57)

where z! is the reflexion of the point z through the centre. In the odd solutions {,, the
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indices m and n have different parity, and they arc antisymmetrical with respect to the
origin

Go(2!) = —Go(2)- (58)
The system of equations (56) is of the form
(14—AD) X = 0, (59)

where the eigenvalues A are to be found as functions of the paramecter 7. The matrix 4 is
symmetrical, and D is positive diagonal, showing the advantage of adopting the parameters
k? and 7 in place of ¢ and .

We have applied method A to the tidal problems in a square basin, with ¢ = b = 2. The
convergence was good only for values of 7 < 1. In order to improve the convergence for
larger values of 7 we added to our base (50) the system

mnx . nmy

G = sin = =sin ===, (60)
‘ m?  n?
(k?nn)z = 7’ (21_2 +b2) ’ <61)

which satisfy the condition {3, = 0 on the boundary. Even so, the convergence was slow,
and as many as 50 terms were required to cover the range of 7 up to 2.

8. MertHop B

In this method we use for { in the variational equation (13) an expansion in terms of a
set of functions ¢, which satisfics the equation

(V2+£%) =0, (62)

and which is complete on the boundary. No restrictions are put on the {, by boundary
conditions, so that 2 enters as a continuous parameter. The method is due to Trefftz
(Collatz 1965 ; see also Davis & Rabinowitz 1g61). By partial integration and the use of (62),
the surface integrals in (13) drop out, and we are left with only the line-integral taken along

the boundary s 5=f§* (;;l_iT 33;) Q'ds} —o. (63)

In (63) the parameter &% enters implicitly in the functions {, and the variation yields the
discrete eigenvalues 7, for a given value of £2. Since the set {, is complete on a line, and not
on an area, it is one-dimensional, rather than two-dimensional.

Let us put in (63) the expansion

g = z (all él‘l + iﬁ" ?771)’ (64)

where 7, also satisfies (62), and a,, f,, {, and 7, are all rcal. We get

3 (@06 DG+ 6 DG B[ =, DG+ Dy ds = 0, (65)

%J‘{ian[grz Dr/l_”IDCn] +/)’n[77n D771+'][ D”nJ} d& = 0’ (66)

20 Vou. 263. A.
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158 A. PNUELI AND C. L. PEKERIS
where D¢ = (é;—if ;r) L. (67)

Since for any pair of functions w, and w, which satisfy thc wave cquation (62) we have

f(wl 0302—[% Vg dg)»-) ds == 0, (68)
ow
j((ul -3722 Wy 4 )d = 0, (69)

cquations (65) and (66) reduce to
s [[aélgrrm, o] ds o, (70

s [[ret, .0 S ds 0 )

These represent simultancous equations for the determination of the coefficients «, and /3

n
and the vanishing of thc determinant of these equations yields the cigenvalucs 7, for a
given k2.

9. FrREE TiDAL OSCILLATIONS IN A ROTATING FLAT RECTANGULAR BASIN

Method B, as given by cquations (64), (70) and (71), can be applicd dircctly to the case
of a rectangular basin. Let the basin be defined in |x| < a, |y| << b. For the symmetrical

wavces we put L. . )
é = Z [an Cos /ln X Cos,uny+1 )’n s /In x(sm/t”y/ n) ]3 (72)

where A, = (mn/2a), and u = (2= A2)3, (73)

so as to satisfy the wave cquation (62). With (72), equations (70) and (71) take on the
form

S{a, ( — g, 4, €OS iy, bsin g, b—1wy, A, sin A, acos Ay a) +70,[ —u, A, cos u. b(sin u, bju,)

' +wy,sind,acos A al} =0 (k=0,1,2,...), (74)
S{ra, | — g, A cOs w, b(sin w b/w) -y, sin Ax a cos A, a] + /3, [v,, cos , b(sin u, b/w,.)
' (e Ayl ) SiN A acos A al} == 0 (k=1,2,...). (75)

a b
Here Uy = f cos A, xcosA, xdx, w,, = f COS 4, i cos p, y dy, (76)
-a ~b

a b
Vpy = f sind, ¥sin A, xdx, {, = f / sin g ysin u, y dy. (77)
-a =0

In the case of antisymmetrical waves we put

‘: = Z [arz COs /1;1 X(Sil’l Hn Z///uu) -+ 1/))71 sin /111 X COS 4y, l/l’ (78)
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where 1, and g, are as defined before. Equations (70) and (71) now become

z{an [ukn cos i, b(Sil’l M b//"k) - /In sin /In acos /1k a(tkn//uk /un)J + T:b)n[ — Upy /1n COs iy, b(Sil’l H b//uk)
—sind,acos A a(p, L Jte)]} =0 (k=0,1,2,...) (79)

Z{T‘xn[ Uy, Ak COS fy b(Sin/un b//ln) —sin Ak acos An a(/uk tkn//un)] +/))n[— Vkn Hn Sinlun b COS ly b
' +w, A, sind acosd,al} =0 (k=1,2,...). (80)

The integrals in (76) and (77) can be readily evaluated, so that the coefficients in the
equations (74) and (75), as well as in (79) and (80), can be evaluated with as high an
accuracy as is needed.

We have treated the case of a square basin and have solved for the eigenvalues and eigen-
functions of the determinant of these equations. The results are shown in figures 22 to 31.
The convergence by method B was good, with a determinant of order 12 yielding an
accuracy which could only be achieved by a determinant of order 50 when method A,
described in § 7, was used. '

10. FREE TIDAL OSCILLATIONS IN A ROTATING FLAT BASIN OF THE
SHAPE OF A CIRCULAR SECTOR

Referring to figure 1, let the basin be bounded by

m
<0< T

N - <r<
<0<y, (<<, (81)

where # can take on any value greater than 4. In a cylindrical system of coordinates (7, 6),
the solutions of the wave equation (62) which have the appropriate singularity as the apex
of a wedge are (Fox 1961)

(= 2 J,,(kr) [a, cos unf +if3, sin und]. (82)

0=—3

2p.

Ficure 1. Tidal basin of circular sector of total angular width 7/u.

Here n/u designates the angular opening of the circular segment according to (81). Putting

k dz k
tn = [T u@ T b= [ Jul2) (2 d (53

w2

nl2p 0
Cpy == fo l cosull cosunfdl, d,, = fo : sin ulf sin und d0, (84)

20-2
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the system of equations (70) and (71) in method B, with { given by (82), becomes

>{a,[ —una,, sin inm cos tim+key, J (k) J, (k)]

un
+1B,ernpnd, (k) I, (k) — by sin lmcos gnm]} = 0 (1=0,1,2,...) (85)

2, (k) T, (k) — by, sin gnmr cos §in]

un

+PBala, unsin §lm cos nm+kdy, J (k) S, (k)]} =0 (I=1,2,...) (86)

pn

In evaluating the coefficients in the system of equations (85) and (86), the trigonometric
integrals ¢, and d,, of (84) are obtained in closed form. For the Bessel integrals a,, and 5,,
defined in (83), we developed the integrands into power series and the integration was
carried out to high accuracy.

In this configuration, the only symmetry that exists for the tide is with respect to the axis
f = 0, for which we have Lr, —0) = C*(r, ). (87)

Equations (85) and (86) were solved for circular basins having total angular openings
of }m, m and $u. The results are shown in figures 2 to 21.

16}~
-6 7 -
0= o~! b3} Y
12} -
j3 58 L
e . -
8- »
kZ - -
e -
od
- |-
0 | L1 | L1 | | I ISR AN S | 0 L1 | L L | l L1 1 | | 1]
0.4 0.8 1.2 16 4 08 1.2 16
- —-—T - ——T
|- - I
-4 -4}
- - o !
r- 1
[~ wviim \ir =
-8/~ 5 -8}~
Ficure 2 Ficure 9

Ficure 2. Dependence of the frequency parameter 4% on the rotation parameter 7 for tidal oscillations
in a 90° circular sector. 2 = (0% —4w?)/gh, T = 2w/o. o is the frequency, » the angular rotation
of the basin, % the depth of liquid. Numbers on graphs give the figure numbers where the
respective tidal flows are shown.

Ficure 9. Dependence of the frequency parameter 42 on the rotation parameter 7 for tidal oscillations
in a semicircular sector. &2 = (02 —4w?)/gh, T = 2w/o. o is the frequency, » the angular rotation
of the basin, % the depth of liquid. Numbers on graphs give the figure numbers where the
respective tidal flows are shown.
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\ € \
\ \ \
Vo \
1 |l 1
H=2k =93 7= 0041 v H=2k = 34,7 = 0741
Ficure 3 Ficure 4
Ficure 3. Free tidal oscillations in a 90° circular sector. 7 = 2w/o, k2 = (0 — 4w?)/gh. — co-tidal
lines, — — — co-range lines. The angular opening of the basin is 77/x. First mode at slow rotation.
Positive wave.
FicuRre 4. Free tidal oscillations in a 90° circular sector. 7 = 2w/o, k2 = (02— 4w?)/gh. — co-tidal
lines, — — - co-range lines. First mode at moderate rotation. Positive wave.
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=2,k =-79 1= 1511

FIiGUrE 5 FI1GURrE 6

Ficure 5. First mode, fast rotation. Approach to a Kelvin-type wave. Positive wave.

F1cure 6. Second mode, slow rotation. Negative wave.
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Ficure 7 Ficure 8
W= 2, k% = 147, 7 = 0-349 =2,k =937=0724
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F1cUrE 7. As the rotation is increased above that in figure 6, there appear two positive amphidromic
systems near the radial coastlines, while the amphidromic system in the interior is still negative.
Mixed wave.

Ficure 8. As the rotation is further increased beyond that of figure 7, the original negative amphi-
dromic system disappears altogether. Positive wave.

11. DiscussION OF RESULTS

The frequency characteristics for the first 4 modes of the tidal oscillations in a flat basin
of the form of a 90° circular sector are shown in figure 2. The graphs give the dependence
of the frequency parameter k2 = (02—4w?)/gh on the rotation parameter 7= 2w/o. All

%
S A

— curves pass through the point 7 =1 (2w=0¢), and for higher rotations w, £ is negative.
;5 S Figure 3 shows the tidal pattern when the rotation of the basin is relatively small (7 = 0-041).
olm The solid lines give the locus of points where the phase ¢ appearing in the factor

<= :

O {=rexpi(ot+9)

E 8 is constant and has the value indicated. The tidal wave advances in a direction of decreasing ¢.

We call a tidal wave positive if it advances in the direction of rotation, which is counter-
clockwise. The arrows show the direction of propagation of the wave on the coastline. The
tide-height is given on a relative scale, in which the maximum amplitude has the value of 10.
An amphidromic point is a point in which the tide height is zero, and from which radiate
outwards the co-tidal lines. In the case of no rotation, the fluid to the right of the § = 1#
line (viewed from the centre) would swing in one phase, while the fluid to the left would
swing all in the opposite phase. In the presence of slow rotation, the change of phase by
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180° takes place over a narrow zone around the # = }n radius, rather than abruptly on the
radius.

As the rotation speed 2w increases and becomes comparable to the frequency ¢, we see in
figure 4 that the phase transition becomes distributed nearly uniformly in angle around the
amphidromic point. The curvature of the co-range lines has become convex, except near
the origin. At larger rotation, shown in figure 5, the tide height assumes a nearly uniform
high value on the coast, especially on the curved part, where it is everywhere greater than 8.
This indicates the transition to a Kelvin-type wave, where the tidal amplitude is a maximum
on the coastline and decreases exponentially in the direction of the normal to the coastline,
as given by equation (44).
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1, k2 = 2,7 = 0-610 po=1,k =—49 7 = 1694 po= 1,k =27 = 0883

Ficure 10 Ficure 11 Ficure 12
Ficure 10. Free tidal oscillations in a semicircular basin. 7 = 2w/o, k2 = (02— 4w?)/gh, — co-tidal
lines, — — — co-range lines. First mode. Moderate rotation. Positive wave.

Ficure 11. Free tidal oscillations in a semicircular basin at high rotation. Approach to Kelvin-type
wave. First mode, positive wave.

Ficure 12. Free tidal oscillations in a semicircular basin. Second mode at moderate rotation. Positive
wave.

We note that in the first mode, the total change of phase around the periphery is 27, and
that the wave is everywhere positive. The latter feature is in conformity with the curve
k%(7) for the first mode in figure 2, which has a negative slope everywhere. The curve £%(7)
for the second mode, shown in figure 2, is different, in that for small values of 7 we have
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[N DNIPEDUUNS [ S DU S

i

==

p=1k=-49 1= 1252 M= 1,k =138, 7 = 0-507
Ficure 13 Ficure 14
Ficure 13. Second mode at high rotation. Approach to Kelvin regime. Positive wave.

Ficure 14. Third mode, at moderate rotation. Positive wave.

Fieure 15. Dependence of the frequency parameter £% on the rotation parameter 7 for tidal oscilla-
tions in a 270° circular sector. £2 = (02 —4w?)/gh, T = 2w/o. o is the frequency, w the angular
rotation of the basin, % the depth of liquid. Numbers on graphs give the figure numbers where
the respective tidal flows are shown.
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po= 3%k =117 = 0638 j= 3k =-1917= 1475
Ficure 16 Ficure 17

Ficure 16. Free tidal oscillations in a 270° circular sector. 7 = 2w/o, k? = (02 — 4w?)/gh, — co-tidal
lines, — — — co-range lines. First mode at moderate rotation. Positive wave.
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Ficurk 17. First mode at moderately large rotation. Kelvin regime not yet established. Positive wave.
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Ficure 18 Ficure 19

Ficure 18. Second mode at slow rotation. Positive wave.

Ficure 19. Second mode at large rotation. Approach to Kelvin regime. Positive wave.

21 VoL. 263. A.
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d&?/dr > 0. This implies, according to the discussion in § 4, that for small rotation the tidal
wave is negative, and that the tide advances along the coast in a direction opposite to that
of the rotation of the basin. This is illustrated in figure 6. As 7 is increased in curve II and
we pass the maximum, we see in figure 7 that the change of sign of d4?/d7 manifests itself by
the appearance of two positive amphidromic points near the radial coastlines, which the main
amphidromic system in the centre is still negative. The tidal wave is now of a mixed
character, advancing in the negative direction along the curved portion of the coastline,
P and in the positive direction along the radial portions. As the rotation is further increased,
the negative amphidromic system disappears altogether, and there remain only the two
positive amphidromic systems, as shown in figure 8. The total change of phase around the
periphery of the basin is now 4.
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=2k =117 = 0946 M= 2k =817 = 0830
Ficure 20 Ficure 21

Freure 20. Third mode at moderate rotation. Signs of Kelvin regime. Positive wave.

Ficure 21. Fifth mode at moderate rotation. Approach to Kelvin regime. Positive wave.

The frequency characteristics for a semicircular basin are shown in figure 9 for the first
10 modes (see Proudman 1928). In the first mode and at moderate rotation, shown in
figure 10, the central co-range lines are elliptical, with the long axis oriented along the
radius of ¢ = §m. As 7 — 0 these ellipses collapse to the radius. At moderately large rotation,
shown in figure 11, the co-range lines have elliptical shape but conform now more to the
coastline. The high and uniform amplitudes along the coastline indicate the approach to
a Kelvin regime. The second mode is shown in figures 12 and 13, with the latter exhibiting
the crowding of the tidal energy away from the interior towards the coastline as the rotation
increases. Figure 14 shows the third mode at moderate rotation. All the waves shown for the
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semicircular basin are positive, and the phase changes by 27n as we go around the circum-
ference, n denoting the order of the mode.

The frequency characteristics for a flat basin of the form of a 270° circular basin are shown
in figure 15. At moderate rotation, the first mode shown in figure 16 exhibits co-range lines
of elliptical shape oriented along the radius of @ = m, which is the nodal line at no rotation.
At higher rotation speeds, shown in figure 17, the co-range lines begin to conform in shape
to the coastline, as required in the Kelvin regime. The second mode is illustrated in figures 18
and 19, with the latter quite Kelvin-like. An example of the third mode is shown in figure 20,
and of the fifth mode in figure 21. All the cases shown have positive waves along the coastline.

2.8

26

0.8~

06—

04

0.2~

—2w/y,

Ficure 23

F1GURE 22

Ficure 22. Frequency characteristics of tidal oscillations in a rotating square flat basin. 7 = 2w/0,
k? = (0% —4w?)/gh. — symmetrical oscillations, — — — antisymmetrical oscillations.

Frcure 23. The frequency o as a function of the angular speed of rotation w for the tidal oscillations
in a square flat rotating basin. v; =  is the lowest frequency for the square basin in the case of
no rotation.

We have applied the analysis given in §9 to the tidal oscillations of a rotating flat square
basin. The dependence of frequency parameter k2 = (02— 4w?)/gh on the speed of rotation
parameter 7 = 20/ is shown in figure 22. Here, the continuous lines refer to symmetrical
oscillations (equations (74) and (75)), and the dashed lines to antisymmetrical oscillations

(equations (79) and (80)). Most of the roots are double, with one curve £%(7) increasing
21-2
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7= 1382 k2=—1175,w = 1, o = 0-724 T=0761,k = 179, w = 1, 0 = 1-314
FicUure 24 Ficure 25

Ficure 24. Free tidal oscillation in a rotating flat square basin. 7 = 2w/o, k2 = (02 —4w?)/gh. First
mode at moderate rotation. Positive wave.

Frcure 25. Second mode at moderate rotation. Positive wave.

\ \ \ // e
9\ \ \ /9
1- [_’ N \ lsoo‘ , _}
7T = 1660,k = —6287, w =2 0 = 1200 7 = 0662k = 3154, w = 1, 0 = 1509
Ficure 26 Ficure 27

Ficure 26. Second mode at high rotation. Approach to Kelvin regime.

Frcure 27. Third mode. First appearance near the periphery of four positive amphidromic points
in a wave which was negative at lower rotation speeds.
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initially with 7, and the other decreasing. The same frequency data are shown in figure 23,
where the curves represent the dependence of the characteristic frequency ¢ on the speed of
rotation w, each expressed in units of v, (=3), which is the lowest frequency of tidal
oscillation of a square basin in the absence of rotation.
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7= 1150, k2 = — 2408, w= 2,00 = 1-739 7 = 0:469, k2 = 8737, w = 1, ¢ = 2131
Ficure 28 I'1cure 29
I'reure 28. The mode of figure 27 at higher rotation speeds.

Ticure 29. The fourth mode at low rotation speeds. Positive wave,
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= 0-889, k2 = 2:621, w = 2, 0 = 2250 T = 1346, k2 = —9-047, w = 3, ¢ = 2:229

Ficure 30 Ficure 31

Ficure 30. The fourth mode at moderate rotation. Approach to Kelvin regime. Positive wave.

Ficure 31. The fourth mode at high rotation. Fully developed Kelvin regime.

The first mode at moderate rotation is shown in figure 24. It consists of a single positive
amphidromic system located at the centre. The total change of phase around the periphery
of the basin is 27. Figures 25 and 26 show oscillations in the seccond mode at moderate and
high speeds of rotation respectively. All the above waves are positive. The third mode starts
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out with a positive slope at 7 = 0, implying a negative wave. As the rotation speed is
increased and the curve £?(7) passes the maximum shown in figure 22, four positive
amphidromic systems move in from the periphery. This stage is illustrated in figure 27.
At higher rotation, shown in figure 28, these positive amphidromic systems move into the
interior of the basin, while at the centre the original negative amphidromic point still
survives. On the periphery, however, the wave has now turned completely positive. The
fourth mode is illustrated in figures 29, 30 and 31. In the last, the Kelvin regime is fully
developed, the tidal energy being concentrated mainly near the coast, with little motion in
the interior. In figures 25, 28 and 30, the co-tidal lines should pass smoothly through the
amphidromic points.

12. DISTRIBUTION OF THE TIDE AROUND A BLUNT CORNER

One of the purposes in investigating the tides in basins of the form of circular sectors was
to determine the distribution of tides around a corner when the angular opening is greater
than 7. Such corners were found to retard the convergence in the numerical solution of the
tidal equations by the method of finite differences. In the form of the solution we adopted in
equation (82), the lowest power of 7is r#, apart from the constant for n = 0. In the neighbour-
hood of the corner, r < 1, the solution must satisfy the wave equation

(V2+£%) (=0, (88)
and the boundary conditions
1d . 9 T
(#;"3“9_179;)§—0; ‘9:-1‘.“’2%- (89)
Taking as a typical solution of (88)
Gy = Sk, 7) [, €7+, e7107], (90)
the boundary condition (89) requires that
1Ty ) [y €90 — B, 0= 8] ok, 1], (1) [, €107 4 B 7100] = 0, (91)

On expressing J'ﬂ (k,r) in terms of Bessel functions of higher order, and retaining the functions
of lowest order only, we are led to

= (k) [(r—1) €4 (74 1) -i00], (92)
For the general solution
{=34,J,k,7)[(T=1) e+ (1+1) e ] (93)
we obtain in the vicinity of the origin
: : Kt
gz Tﬂ[(TMI) el'we_‘_(,r_}—l) e_lﬂo]%Aﬂ Q/Lﬂ!' (94)

Equation (94) shows that the singularity near the corner, given by r#, is similar to that in
potential flow, with the rotation entering only in the expression in brackets, which is regular.
Writing (94) in the form o

{~re[rcospl—isinud] (r<1), (95)

we should expect to find in (82) oy =T, (96)
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In table 1 we give a comparison of (—«,/f;) with 7 in the solutions obtained for the 270°
circular sector (4 = %). It is seen that the agreement is good, especially for small values

of |k?|.

TABLE 1. VALUES OF —a,/f;, IN THE SOLUTION (82) FOR THE 270°
CIRCULAR SECTOR (4 =: %), COMPARED WITH 7

k* T —ao/p
-79 1-208 1-:35
—-79 1-:333 1-:33
—7-9 1-619 1-50
—-19 1-088 1-087
-19 1-171 113
-19 1-475 1-47

11 0-638 0:640
1-1 0-946 0-95
4-1 0:467. 0-47
4-1 0-779 0-780
81 0:411 0:40
81 0:725 0-79
81 0-830 0-830

11-2 0-730 0-74

11-2 0-818 0-84

14-5 0-:090 0-093

14-5 0-472 0:46
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